Thursday, February 17, 2011

rawshark

RAWSHARK(1)             The Wireshark Network Analyzer             RAWSHARK(1)



NAME
rawshark - Dump and analyze raw libpcap data

SYNOPSIS
rawshark [ -d | ] [ -F ]
[ -h ] [ -l ] [ -n ] [ -N ]
[ -o ] ... [ -r ]
[ -R ] [ -s ] [ -S ]
[ -t ad|a|r|d|e ] [ -v ]

DESCRIPTION
Rawshark reads a stream of packets from a file or pipe, and prints a
line describing its output, followed by a set of matching fields for
each packet on stdout.

INPUT
Unlike TShark, Rawshark makes no assumptions about encapsulation or
input. The -d and -r flags must be specified in order for it to run.
One or more -F flags should be specified in order for the output to be
useful. The other flags listed above follow the same conventions as
Wireshark and TShark.

Rawshark expects input records with the following format. Note that
this matches the pcap_pkthdr struct and packet data used in libpcap.

struct rawshark_rec_s {
uint32_t ts_sec; /* Time stamp (seconds) */
uint32_t ts_usec; /* Time stamp (microseconds) */
uint32_t caplen; /* Length of the packet buffer */
uint32_t len; /* "On the wire" length of the packet */
uint8_t data[caplen]; /* Packet data */
};

OUTPUT
If one or more fields are specified via the -F flag, Rawshark prints
the number, field type, and display format for each field on the first
line as "packet number" 0. For each record, the packet number, matching
fields, and a "1" or "0" are printed to indicate if the field matched
any supplied display filter. A "-" is used to signal the end of a field
description and at the end of each packet line. For example, the flags
-F ip.src -F dns.qry.type might generate the following output:

0 FT_IPv4 BASE_NONE - 1 FT_UINT16 BASE_HEX -
1 1="1" 0="192.168.77.10" 1 -
2 1="1" 0="192.168.77.250" 1 -
3 0="192.168.77.10" 1 -
4 0="74.125.19.104" 1 -

Note that packets 1 and 2 are DNS queries, and 3 and 4 are not. Adding
-R "not dns" still prints each line, but there's an indication that
packets 1 and 2 didn't pass the filter:

0 FT_IPv4 BASE_NONE - 1 FT_UINT16 BASE_HEX -
1 1="1" 0="192.168.77.10" 0 -
2 1="1" 0="192.168.77.250" 0 -
3 0="192.168.77.10" 1 -
4 0="74.125.19.104" 1 -

Also note that the output may be in any order, and that multiple
matching fields might be displayed.

OPTIONS
-d
Specify how the packet data should be dissected. The encapsulation
is of the form type:value, where type is one of:

encap:name Packet data should be dissected using the libpcap data
link type name, e.g. encap:EN10MB for Ethernet.

encap:name Packet data should be dissected using the libpcap data
link type (DLT) name, e.g. encap:EN10MB for Ethernet. Names are
converted using pcap_datalink_name_to_val().

encap:number Packet data should be dissected using the libpcap DLT
number, e.g. encap:105 for raw IEEE 802.11. A complete list of DLTs
can be found in pcap-bpf.h in the libpcap sources.

proto:protocol Packet data should be passed to the specified
Wireshark protocol dissector, e.g. proto:http for HTTP data.

-F
Add the matching field to the output. Fields are any valid display
filter field. More than one -F flag may be specified, and each
field can match multiple times in a given packet. A single field
may be specified per -F flag. If you want to apply a display
filter, use the -R flag.

-h Print the version and options and exits.

-l Flush the standard output after the information for each packet is
printed. (This is not, strictly speaking, line-buffered if -V was
specified; however, it is the same as line-buffered if -V wasn't
specified, as only one line is printed for each packet, and, as -l
is normally used when piping a live capture to a program or script,
so that output for a packet shows up as soon as the packet is seen
and dissected, it should work just as well as true line-buffering.
We do this as a workaround for a deficiency in the Microsoft Visual
C++ C library.)

This may be useful when piping the output of TShark to another
program, as it means that the program to which the output is piped
will see the dissected data for a packet as soon as TShark sees the
packet and generates that output, rather than seeing it only when
the standard output buffer containing that data fills up.

-n Disable network object name resolution (such as hostname, TCP and
UDP port names), the -N flag might override this one.

-N
Turn on name resolving only for particular types of addresses and
port numbers, with name resolving for other types of addresses and
port numbers turned off. This flag overrides -n if both -N and -n
are present. If both -N and -n flags are not present, all name
resolutions are turned on.

The argument is a string that may contain the letters:

m to enable MAC address resolution

n to enable network address resolution

t to enable transport-layer port number resolution

C to enable concurrent (asynchronous) DNS lookups

-o :
Set a preference value, overriding the default value and any value
read from a preference file. The argument to the option is a
string of the form prefname:value, where prefname is the name of
the preference (which is the same name that would appear in the
preference file), and value is the value to which it should be set.

-r
Read packet data from input source. It can be a regular file or
pipe, and must be have the record format specified above.

-R
Cause the specified filter (which uses the syntax of read/display
filters, rather than that of capture filters) to be applied before
printing the output.

-s Allows standard pcap files to be used as input, by skipping over
the 24 byte pcap file header.

-S Use the specified format string to print each field. The following
formats are supported:

%D Field name or description, e.g. "Type" for dns.qry.type

%N Base 10 numeric value of the field.

%S String value of the field.

For something similar to Wireshark's standard display ("Type: A
(1)") you could use %D: %S (%N).

-t ad|a|r|d|e
Set the format of the packet timestamp printed in summary lines,
the default is relative. The format can be one of:

ad absolute with date: The absolute date and time is the actual
time and date the packet was captured

a absolute: The absolute time is the actual time the packet was
captured, with no date displayed

r relative: The relative time is the time elapsed between the first
packet and the current packet

d delta: The delta time is the time since the previous packet was
captured

e epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)

-v Print the version and exit.

READ FILTER SYNTAX
For a complete table of protocol and protocol fields that are
filterable in TShark see the wireshark-filter(4) manual page.

FILES
These files contains various Wireshark configuration values.

Preferences
The preferences files contain global (system-wide) and personal
preference settings. If the system-wide preference file exists, it
is read first, overriding the default settings. If the personal
preferences file exists, it is read next, overriding any previous
values. Note: If the command line option -o is used (possibly more
than once), it will in turn override values from the preferences
files.

The preferences settings are in the form prefname:value, one per
line, where prefname is the name of the preference and value is the
value to which it should be set; white space is allowed between :
and value. A preference setting can be continued on subsequent
lines by indenting the continuation lines with white space. A #
character starts a comment that runs to the end of the line:

# Capture in promiscuous mode?
# TRUE or FALSE (case-insensitive).
capture.prom_mode: TRUE

The global preferences file is looked for in the wireshark
directory under the share subdirectory of the main installation
directory (for example, /usr/local/share/wireshark/preferences) on
UNIX-compatible systems, and in the main installation directory
(for example, C:\Program Files\Wireshark\preferences) on Windows
systems.

The personal preferences file is looked for in
$HOME/.wireshark/preferences on UNIX-compatible systems and
%APPDATA%\Wireshark\preferences (or, if %APPDATA% isn't defined,
%USERPROFILE%\Application Data\Wireshark\preferences) on Windows
systems.

Disabled (Enabled) Protocols
The disabled_protos files contain system-wide and personal lists of
protocols that have been disabled, so that their dissectors are
never called. The files contain protocol names, one per line,
where the protocol name is the same name that would be used in a
display filter for the protocol:

http
tcp # a comment

The global disabled_protos file uses the same directory as the
global preferences file.

The personal disabled_protos file uses the same directory as the
personal preferences file.

Name Resolution (hosts)
If the personal hosts file exists, it is used to resolve IPv4 and
IPv6 addresses before any other attempts are made to resolve them.
The file has the standard hosts file syntax; each line contains one
IP address and name, separated by whitespace. The same directory as
for the personal preferences file is used.

Name Resolution (ethers)
The ethers files are consulted to correlate 6-byte hardware
addresses to names. First the personal ethers file is tried and if
an address is not found there the global ethers file is tried next.

Each line contains one hardware address and name, separated by
whitespace. The digits of the hardware address are separated by
colons (:), dashes (-) or periods (.). The same separator
character must be used consistently in an address. The following
three lines are valid lines of an ethers file:

ff:ff:ff:ff:ff:ff Broadcast
c0-00-ff-ff-ff-ff TR_broadcast
00.00.00.00.00.00 Zero_broadcast

The global ethers file is looked for in the /etc directory on UNIX-
compatible systems, and in the main installation directory (for
example, C:\Program Files\Wireshark) on Windows systems.

The personal ethers file is looked for in the same directory as the
personal preferences file.

Name Resolution (manuf)
The manuf file is used to match the 3-byte vendor portion of a
6-byte hardware address with the manufacturer's name; it can also
contain well-known MAC addresses and address ranges specified with
a netmask. The format of the file is the same as the ethers files,
except that entries of the form:

00:00:0C Cisco

can be provided, with the 3-byte OUI and the name for a vendor, and
entries such as:

00-00-0C-07-AC/40 All-HSRP-routers

can be specified, with a MAC address and a mask indicating how many
bits of the address must match. The above entry, for example, has
40 significant bits, or 5 bytes, and would match addresses from
00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF. The mask need not be a
multiple of 8.

The manuf file is looked for in the same directory as the global
preferences file.

Name Resolution (ipxnets)
The ipxnets files are used to correlate 4-byte IPX network numbers
to names. First the global ipxnets file is tried and if that
address is not found there the personal one is tried next.

The format is the same as the ethers file, except that each address
is four bytes instead of six. Additionally, the address can be
represented as a single hexadecimal number, as is more common in
the IPX world, rather than four hex octets. For example, these
four lines are valid lines of an ipxnets file:

C0.A8.2C.00 HR
c0-a8-1c-00 CEO
00:00:BE:EF IT_Server1
110f FileServer3

The global ipxnets file is looked for in the /etc directory on
UNIX-compatible systems, and in the main installation directory
(for example, C:\Program Files\Wireshark) on Windows systems.

The personal ipxnets file is looked for in the same directory as
the personal preferences file.

SEE ALSO
wireshark-filter(4), wireshark(1), tshark(1), editcap(1), tcpdump(8),
pcap(3), dumpcap(1), text2pcap(1)

NOTES
Rawshark is part of the Wireshark distribution. The latest version of
Wireshark can be found at .

HTML versions of the Wireshark project man pages are available at:
.

AUTHORS
Rawshark uses the same packet dissection code that Wireshark does, as
well as using many other modules from Wireshark; see the list of
authors in the Wireshark man page for a list of authors of that code.



1.2.7 2010-03-31 RAWSHARK(1)

No comments:

Post a Comment